SHELL-SHOCKED DIFFUSION MODEL FOR THE LIGHT CURVE OF SN 2006gy
نویسندگان
چکیده
We explore a simple model for the high luminosity of SN 2006gy involving photon diffusion of shock-deposited thermal energy. The distinguishing property of the model is that the large “stellar” radius of ∼160 AU required to prevent adiabatic losses is not the true stellar radius, but rather, it is the radius of an opaque, unbound circumstellar envelope, created when ∼10 M, was ejected in the decade before the supernova in an eruption analogous to that of h Carinae. The supernova light is produced primarily by diffusion of thermal energy following the passage of the blast wave through this shell. This model differs from traditional models of supernova debris interacting with an external circumstellar medium (CSM) in that here the shell is optically thick and the escape of radiation is delayed. We show that any model attempting to account for SN 2006gy’s huge luminosity with radiation emitted by ongoing CSM interaction fails for the following basic reason: the CSM density required to achieve the observed luminosity makes the same circumstellar envelope opaque ( ), forcing a thermal t 300 diffusion solution. In our model, the weaker CSM interaction giving rise to SN 2006gy’s characteristic Type IIn spectrum and soft X-rays is not linked to the power source of the visual continuum; instead, it arises after the blast wave breaks free from the opaque shell into the surrounding wind. While a simple diffusion model can explain the gross properties of the early light curve of SN 2006gy, it predicts that the light curve must plummet rapidly at late times, unless an additional power source is present. Subject headings: circumstellar matter — stars: evolution — supernovae: individual (SN 2006gy)
منابع مشابه
SN 2006tf: PRECURSOR ERUPTIONS AND THE OPTICALLY THICK REGIME OF EXTREMELY LUMINOUS TYPE IIn SUPERNOVAE
SN 2006tf is the third most luminous supernova (SN) discovered so far, after SN 2005ap and SN 2006gy. SN 2006tf is valuable because it provides a link between two regimes: (1) luminous type IIn supernovae powered by emission directly from interaction with circumstellar material (CSM), and (2) the most extremely luminous SNe where the CSM interaction is so optically thick that energy must diffus...
متن کاملCircumstellar interaction in type Ibn supernovae and SN 2006jc
I analyse peculiar properties of light curve and continua of enigmatic Ibn supernovae, including SN 2006jc, and argue in favour of the early strong circumstellar interaction. This interaction explains the high luminosity and fast flux rise of SN 1999cq, while the cool dense shell formed in shocked ejecta can explain the smooth early continuum of SN 2000er and unusual blue continuum of SN 2006jc...
متن کاملSPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy
We present a detailed analysis of the extremely luminous and long-lasting Type IIn supernova (SN) 2006gy using spectra obtained between days 36 and 237 after explosion. We derive the temporal evolution of the effective temperature, radius, blast-wave and SN-ejecta expansion speeds, and bolometric luminosity, as well as the progenitor wind density and total swept-up mass overtaken by the shock. ...
متن کاملNew Observations of the Very Luminous Supernova 2006gy: Evidence for Echoes
Supernova (SN) 2006gy was a hydrogen-rich core-collapse SN that remains one of the most luminous optical supernovae ever observed. The total energy budget (> 2×10 erg radiated in the optical alone) poses many challenges for standard SN theory. We present new ground-based near-infrared (NIR) observations of SN 2006gy, as well as a single epoch of Hubble Space Telescope (HST) imaging obtained mor...
متن کاملSn 2005ap: a Most Brilliant Explosion
We present unfiltered photometric observations with ROTSE-III and optical spectroscopic follow-up with the HET and Keck of the most luminous supernova yet identified, SN 2005ap. The spectra taken about 3 days before and 6 days after maximum light show narrow emission lines (likely originating in the dwarf host) and absorption lines at a redshift of z = 0.2832, which puts the peak unfiltered mag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007